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A method due to Chester is applied to the theoretical study of resonant wave 
motion of a radiatively active gas. The inviscid non-conducting grey gas is 
confined between two infinite parallel walls, and a one-dimensional wave motion 
is driven by a sinusoidally varying input of black-body radiation from one of the 
walls. For sufficiently weak driving radiation, the motion can be described by 
the general solution of the classical wave equation (with the functional form of 
the solution still undetermined) plus a particular solution due to the driving 
radiation. When the driving is done at  or near a resonant frequency, however, 
nonlinearities and perturbations in spontaneous emission from the gas must be 
taken into account before application of the boundary conditions. Such applica- 
tion then leads to a nonlinear integral equation governing the undetermined 
function in the general solution of the wave equation. This equation is solved 
numerically by the method of parametric differentiation. 

In  a frequency range around resonance and for a sufficiently weak relative 
level of spontaneous emission, the nonlinearities give rise to shock waves 
(numbering N a t  the Nth resonant frequency) that are repeatedly reflected at  
the walls. The perturbations in spontaneous emission give rise to damping, how- 
ever, and for sufficiently high levels of emission the shock waves disappear. 
Specific results for various values of optical thickness and various relative levels 
of spontaneous emission are presented at  frequencies in a range around the first 
resonance. 

1. Introduction 
This paper studies the interaction of gasdynamic wave motion and the radiative 

transfer of energy. We are concerned in particular with a resonant phenomenon 
Ohat can occur when an absorbing and emitting gas, driven by a sinusoidally 
varying input of radiation, is confined between two infinite parallel walls. As 
illustrated in figure 1 (a), one wall is taken to be perfectly reflecting, while the 
other is black with a temperature that varies sinusoidally around the mean 
temperature of the system. The radiative energy flux emitted from the black 
wall is absorbed by the gas, and the resulting pressure fluctuations drive a one- 
dimensional wave motion perpendicular to the walls, This situation is intended 
to be representative, in so far as radiative effects are concerned, of the ex- 
perimental device shown in figure 1 ( b ) .  To isolate the radiative effects, we dis- 
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FIGURE 1. (a )  Analytical model. ( b )  Experimental device. 

regard all influences of molecular transport, notably those that arise from the 
boundary layer on the cylindrical side wall. 

The resonant phenomenon with which we are concerned occurs when the wave 
motion is driven at  a frequency close to one of the natural acoustic frequencies 
of the system. As with resonant phenomena generally, the response at resonance 
is markedly larger than that away from resonance. Furthermore, effecks that are 
small enough to be neglected in the non-resonant situation play essential roles 
in governing the wave motion near resonance. In  the present problem it will 
be seen that these effects are (i) perturbations in spontaneous emission of radiation 
arising from the temperature fluctuations in the gas, and (ii) gasdynamic non- 
linearities. In  fact, the simplest conceivable theory, which neglects both of these 
effects, predicts the impossible result of an infinite response at resonance. 

In  an earlier analysis of the problem, Long & Vincenti (1967) retained the 
perturbations in spontaneous emission but neglected nonlinearities. Their results 



Nonlinear resonant wave motion of a radiating gas 163 

show that, for conditions attainable in the laboratory, the amplitude of the 
pressure variation on the reflecting wall, though prevented from becoming infinite 
by the spontaneous emission, could still be as much as three orders of magnitude 
greater at resonance than away from resonance. 

Because of the large resonant response given by the linearized theory, one 
wonders whether gasdynamic nonlinearities may not also be significant. A com- 
prehensive theoretical treatment of nonlinear resonant wave motion has been 
carried out by Chester (1964). In  his case, a non-radiating gas in a closed tube is 
driven by a small amplitude sinusoidal piston motion of one of the end walls. 
Chester’s analysis shows that, near resonance, gasdynamic nonlinearities give 
rise to shock waves that travel back and forth in the tube, being repeatedly 
reflected at  the end walls. Near the first resonant frequency one such wave exists; 
near the Nth resonant frequency N waves appear. Because of the similarity of 
the two problems, one expects that the nonlinear effects that appear in the 
piston-driven problem may also be important in the radiatively driven problem. 

For his treatment of the piston-driven problem, Chester devised an ingenious 
method of analysis; this method can be employed to solve the radiatively driven 
problem as well. Chester’s method allows inclusion not only of nonlinearities 
but also of other effects that play an important role near resonance. In  his piston- 
driven case Chester included the effect of longitudinal viscosity and thermal 
conductivity and of the boundary layer on the side wall of the tube. For our 
radiatively driven problem in the assumed absence of molecular-transport effects, 
we must include the perturbations in spontaneous emission. 

The key to the application of Chester’s method lies in an understanding of 
why a simplified linear theory fails a t  resonance. Consider a situation in which 
the transport of energy by wave motion is much larger than that arising from 
perturbations in spontaneous emission. (This is, in fact, the situation for the 
experimental device.) Under these conditions the simplest conceivable theory, 
already mentioned, is a linearized theory in which the perturbations in spon- 
taneous emission are neglected. The equation that governs the velocity of the 
gas is then an inhomogeneous wave equation with the isentropic speed of sound 
as the wave speed. The inhomogeneity represents the effect of the driving 
radiation. The particular solution up of the equation is selected so that it vanishes 
at  the black wall, which is at  x = 0. The complementary function is the general 
solution of the homogeneous wave equation, i.e. 

u c  = f+(t - xlaso) +f-V + +-%o), 

where a,, is the isentropic speed of sound evaluated at  the mean state of the gas. 
The complementary function can be made to vanish at  x = 0 by taking 

f+(t) = -f-(t) =f(t), 
say. Since both up and uc now vanish at  x = 0, the boundary condition u = 0 
is satisfied at the black wall. The function f is then determined by the condition 
that the complementary function must identically cancel the particular solution 
at x = L, thus satisfying the boundary condition at  the reflecting wall. 

This procedure gives acceptable results except when the system is near 
11-2 
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resonance. To understand why it then fails, consider some properties of the 
complementary function. It may be assumed that, after the system has been 
operating for a long time, the response will be periodic with the same period 
as the driving radiation. If the radian frequency of the driving radiation is w ,  
f is thus periodic in time with period 2nlw. As a consequence, the complementary 
function u, = f(t - x/a,,) - f (t + "/a,,) will vanish wherever x = N.rra,,/w, where N 
is an integer. When the position of the reflecting wall coincides with one of these 
nodes, that is, when L = Nn-a,,/w, the system is at  resonance. Since the com- 
plementary function then vanishes at  the reflecting wall, however, it cannot 
cancel the particular solution at that point. In  attempting to satisfy the boundary 
condition, this theory can only predict an infinite amplitude for the comple- 
mentary function, and hence for the gasdynamic response. Slightly off the 
resonant frequency, the response, though still finite, is so large that the small 
perturbation assumption of the linear theory is violated. 

If the radiative driving of the gas is sufficiently weak, which is the case in the 
laboratory situation, one expects that the response will in fact remain small 
even at  resonance. The main part of the equation governing the wave motion 
should then still be the same as the linear wave equation of the simplified theory. 
Near resonance, however, the equation must be made more realistic before one 
applies the boundary condition in the neighbourhood of a node of the com- 
plementary function. Chester suggests that this be done by iteration as follows. 
The nonlinear terms and any other ordinarily small terms that play an important 
role near resonance are first evaluated formally on the basis of the solution 
obtained from the linear wave equation. (In the present problem the only other 
such terms are those due to the perturbations in spontaneous emission.) Since 
it is the application of the boundary condition a t  x = L that causes the solution 
of the linear wave equation to become infinite, one must use for this evaluation 
the solution in the still functionally undetermined form that is obtained prior to 
the application of the boundary condition. For this purpose it is sufficient to use 
only the complementary function u, = f ( t  - x/a,,) -f(t + x/uso), because near 
resonance this will predominate over up. The result of this iterative process is 
an inhomogeneous wave equation in which the inhomogeneous terms contain 
the still undetermined function f. Once this equation has been solved for the 
velocity in terms off, the boundary conditions can then be applied at the re- 
flecting wall. This results in a nonlinear integral equation, for the form of f, 
that is uniformly valid at  resonance as well as away from resonance. 

The validity of Chester's method is well established. The results of the original 
application to piston-driven wave motion of a non-radiating gas are in good 
agreement with several experimental investigations of the problem (for example, 
Cruikshank 1969), as well as with other theoretical investigations (Betchov 1958; 
Collins 1971; Mortell 1971). In  a second application of his method, Chester 
(1968) treated the problem of resonant surface waves in a liquid in a rectangular 
tank. Here nonlinear effects, together with dissipation and dispersion, are 
significant. To test the theoretical results, Chester & Bones (1968) investigated 
the problem experimentally. Although the wave motion presented some novel 
features, they found that the theory adequately describes the phenomena. 
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The linearized theory of radiatively driven waves by Long & Vincenti, already 
cited, was followed by experimental investigations by Compton (1969) and 
Chapman (1970). Both these investigators used a device like that depicted in 
figure I@),  with carbon dioxide as the radiatively active gas. Compton and 
Chapman did not observe shock waves when the system was at resonance. 
Evidently, the radiatively driven waves, being much weaker than piston-driven 
waves, were damped by the side-wall boundary layer to such an extent that 
nonlinear effects were unimportant even at resonance. This, as well as theo- 
retical estimates made by Eninger (1971), suggests that the present nonlinear 
inviscid theory would be difficult to test experimentally. It is of interest, 
nevertheless, as one of the few theoretical studies of the interaction of 
gasdynamic nonlinearities and radiative transfer that is not essentially 
numerical. 

The main body of the paper is divided into four parts. In  $ 2 the problem is 
stated in mathematical terms, and equations appropriate for the application of 
Chester’s method are derived. To this end several idealizations and approxima- 
tions must be introduced, the most significant being those concerning the 
radiative transfer. In  particular, the absorption coefficient is assumed to be 
independent of spectral frequency (grey-gas approximation), and the integro- 
exponential functions appearing in the equation of radiative heat addition are 
approximated by exponential functions. In  3 3 Chester’s method is discussed and 
applied, leading to the nonlinear integral equation governing f. The solution of 
this equation is taken up in $4.  Here, following analytical discussion of two special 
cases, the method of parametric differentiation is used to reduce the general 
nonlinear equation to linear integral equations, and the trapezoidal integration 
formula is applied to reduce these equations to a set of linear algebraic equations. 
These are solved on a computer. The resulting solutions are presented and dis- 
cussed in 5 5 .  These show how the response varies with radiative level, optical 
thickness and deviation from resonance. They also show that shock waves exist 
only below a certain critical radiative level, which decreases with increasing 
deviation from resonance. 

2. Basic equations 
The basic assumptions of the analysis are as follows. First, the gas is taken to 

be thermally and calorically perfect, inviscid and in local thermodynamic 
equilibrium. Second, the speed of light is assumed to be so large that it may 
be approximated as infinite. As a consequence there are no radiative contributions 
to the pressure or internal energy of the gas, and the temporal term in the equation 
of radiative transfer is negligible. Third, the radiative absorption coefficient is 
idealized as being independent of spectral frequency (grey-gas approximation). 
Further, since the local thermodynamic state of the gas is to deviate by only a 
small amount from the mean state, the resulting perturbations in the absorption 
coefficient will be small. Hence, in calculation of the fist-order effect of radiative 
transfer, the absorption coefficient is assumed to be independent of perturbations 
in the state of the gas. 
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The problem is formulated in dimensionless form by introduction of the 
following dimensionless variables: 

--I 
zc = "/a,,, p = p/po, F =PIP,,  Ti = TIT,, 

5' = ( s  - s,,)\c,, ijR = qR/crT4,, X = xw\a,,, i? = wt.  

The quantities u, p, p ,  T ,  s and a, are respectively the velocity, density, pressure, 
temperature, entropy and isentropie speed of sound of the gas. The subscript 
zero refers to the undisturbed, mean state of the gas, and a prime denotes a 
perturbation quantity. The quantity w is the radian frequency of the sinusoidal 
temperature variation of the black wall. The radiative heat flux is denoted by qR, 
cr is the Stefan-Boltzmann constant and c, is the specific heat at  constant volume. 
The variables x and t are respectively the distance from the black wall and the 
time. 

The mathematical statement of the problem can then be written as follows. 
Continuity equation : . -  

a? - ~ G I  ap 
-+p-++-I- = 0. at ax ax 

Momentum equation: 
aui +auf I ap  
at ax ? p a x  
-+u -+-- = 0. 

, *  
Energy equation: 

Equation of radiative heat addition: 

- 2Bu (1 + lFhl ~ i n i ) ~ { E ~ ( B u x )  + E2[Bu(2L-Z)]} ( -- - 
ax 

+ BuIOz T4(E1(Bu I x - 53 I ) + El [Bu ( 2 x  - 5 - Z)]} dZ - 2T4 

- - 
Equations of state: 

Boundary conditions : 
p = jiT, p = prexps'. 

- 
u'(0,t) = ;Ei'(L,t) = 0. 

The functions El(x) and E,(z) appearing in (4) are integro-exponential functions 
defined bv 

(7) 

The dimensionless parameters appearing in the above statements are (i) the 
dimensionless distance between the walls, (ii) the Bouguer number 

Bu = aoa,,/o, 

where a, is the grey-gas absorption coefficient, (iii) the Boltzmann number 

Bo = cDpoa,,laT,3, 

where cp is the specific heat at  constant pressure, (iv) the dimensionless 
amplitude of the sinusoidal temperature variation of the black wall and 
(v) the ratio of specific heats y E cplc,. 
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The parameter L is the ratio of the distance L between the walls to the 
characteristic length u,,/w for the wave motion. Since resonance occurs whenever 
L = Nna,,/w, the dimensionless condition for resonance is simply E = N7c. 

The Bouguer number Bu is the ratio of the characteristic length a,,lo for the 
wave motion to the mean free path l/a, for photons. The situation is optically 
thick when the ratio of the distance between the walls to the mean free path of 
photons is large, that is, La, $ 1 or alternatively EBu > 1. When EBu 9 1, the 
situation is optically thin. 

The Boltzmann number Bo is a measure of the importance of transport of 
energy by wave motion relative to transfer of energy by radiation. In the 
laboratory device the value of Bo is large. Long & Vincenti (1967), for example, 
estimate values in the range from 500 to 10 000. A large value of Bo will be one of 
the basic approximations in the present theory. 

The right-hand side of the equation of radiative heat addition (4) (cf. Vincenti & 
Kruger 1965) is made up of three contributions. The first term within the braces 
represents heat added to an element of gas at  Z as the result of radiation emitted 
by the black wall. The integral term represents heat added to the same element 
as the result of spontaneous emission of radiation from other elements of the gas. 
The final term gives the heat lost as the result of spontaneous emission from the 
element itself. The integro-exponential functions arise from the attenuation of 
the radiative energy as it passes through the absorbing gas. For example, in the 
integral term, E,(BulZ - 21) comes from attenuation of the radiation that arrives 
at  X directly from 2; E1[Bu(2E - 2 -%)I is from attenuation of the radiation that 
arrives at X from 5 by way of reflexion from the wall at  E .  

We first derive equations appropriate for the application of Chester's method. 
The derivation for a non-radiating gas, but with the required nonlinear effects, 
is given by Lighthill (1956) and Chester (1964). The presentation here follows 
these derivations with some modification to provide for radiative transfer. 

A characteristic of resonant systems generally is that the resonant response is, 
in some sense, much larger than the driving mechanism. We can take advantage 
of this in the present situation to neglect certain unimportant terms. First 
consider the driving radiation. It is coupled to the gasdynamics through the 
energy equation (3). Since the nonlinear convection 5' as'/a?Z of entropy is much 
smaller than &'/at and since p p  M 1, we see from equation (3) that the entropy 
perturbation S' and the driving radiation are of the same order, say 8'. The 
gasdynamic response, on the other hand, is characterized by the perturbations 
in pressure, density, temperature and velocity. These are all of the same order, 
say U'.  As a consequence of the resonant response being much greater than the 
driving mechanism, we thus have the near-resonance condition g' B'. Since 
it is necessary to keep only the most significant nonlinear terms, those of order 
g ' 2  will be retained in the derivation, while those of order g'8', 8 ' 2 ,  or smaller 
will be neglected. 

To begin with, the pressure gradient is written as 
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With the aid of (5) this can be written as 
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where C is given by 3 = PY-1. (10) 

Equation (9) is used to eliminate the pressure from the momentum equation (2). 
Next, the density is eliminated from both the momentum equation and the 
continuity equation ( 1) through introduction of the perturbation quantity 

C’ = $Y-l) - 1, (11) 

This quantity, being of the same order as perturbations in the density, is also 
of order D’. The momentum equation, in terms of ii‘, C‘ and 5’, is added to 
and subtracted from the continuity equation, in terms of U’ and C’. The resulting 
equations are 

In  these equations, terms of order V‘,  Ut2 and B‘ are retained while terms of 
order B’f? and smaller are neglected. 

It is next necessary to calculate the entropy gradient in (12) by means of the 
energy equation (3) and the equation of radiative heat addition (4). By neglecting 
the term representing the convection of entropy and terms containing perturba- 
tions in the density and temperature, all of which are of order V‘B‘ or smaller, 
we write the energy equation as 

This equation is differentiated with respect to E and integrated with respect 
to f to give 

The equation of radiative heat addition (4) will be simplified by approximating 
the integro-exponential functions by pure exponentials as follows: 

E2(z) z a exp ( - bx) and E,(z) M ab exp ( - bz). 

This is the often-used ‘ substitute-kernel ’ or ‘exponential ’ approximation. The 
constants a and b are chosen to obtain reasonable agreement between the integro- 
exponential functions and their exponential approximations. (For discussion of 
this approximation, see Vincenti & Kruger (1965, p. 483).) With the use of the 
exponential approximation and the introduction of the temperature perturbation 
F’ = - 1, equation (4) can be written to first order in T’ as 

a p  
ax - - = 8a Bu( sin f(exp ( - bBux) + exp [ - bBu(2L - z)]} 

+ bBu1’ F’{exp ( - Bul: - z\) + exp [ - bBu(2L - 5 -a)]) dE - 2T’la . (15) 
0 I 
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We now want to eliminate F‘ from this equation in favour of E’. From (1 1)  and 
(6 ) ,  it is readily shown that F’ = 2C’ + O( U‘2) + O($’).  Since C’ is of order 8’, near 
resonance, where B’ < a‘, the approximation F J  z 2E’ is permissible. It may 
seem inconsistent to neglect terms here that are of order 812 and 8‘, since terms 
of these orders have already been retained in (12).  The approximation is used, 
however, only in terms describing the radiative transfer of energy, and these will 
be multiplied in (14)  by the small parameter l/Bo. Thus in making the approxima- 
tion we are, in fact, neglecting terms of order (1/Bo)  8’2 and (1 /Bo)  8’. 

Replacing F‘ by 2E‘, we now use (15)  to evaluate the right-hand side of (14).  
The resulting expression for a3’/aX is then substituted into (12)  to obtain 

Bu2 
B o  - 8ab - (IFLl cosf{exp ( -bBuX)  -exp [ -bBu  (2L-X)l) 

- 2 b B u ~ ~ ~ ’ { e x p  ( - bBu(E - 21 ) sgn (X - 2) - exp [ - bBu(2L  - X - $)I} d2 

Here the notation 
& - -  
c(z, t )  t f Z(Z, t r )  dtP 

- m  

has been introduced. The function sgn (2 )  in the integral term is + 1 if z is positive 
and - 1 if x is negative. 

Equations (16)  are two nonlinear integro-differential equations for ZL‘ and C‘. 
The terms on the left of the equals sign are the linear terms that govern ordinary 
acoustic motion. The first terms on the right represent the nonlinear effects of 
the gasdynamics. The remaining terms are due to radiakive energy transfer. 
Note that these terms are linear. The first term inside the braces results from the 
driving radiation emitted by the black wall. The integral term and the last term 
are due to  perturbations in spontaneous emission from the gas. The terms retained 
in (16)  are of order 8’, v‘2, $‘ or (l/Bo) v ;  consistent with the near-resonance 
approximation 8’ >> &” and the assumption i/Bo Q 1, the terms neglected are 
of order Q’S‘, ( l / B o )  812, (i/Bo)$’ and smaller. 

3. Application of Chester’s method 
As was discussed in the introduction, the key to Chester’s method lies in 

understanding why a simplified linear theory fails near resonance. The equations 
appropriate for this simplified theory are equations (16)  with the nonlinear terms 
and the terms involving perturbations in spontaneous emission deleted, that is, 

a a -  Bu2 - (% -t E) (u‘ & 5) = - Sub - IT;ll cost {exp ( - bBuZ) - exp [ - b B u ( 2 z  - X)]}. Bo 
(17)  



170 J .  E .  Eninger and W .  G. Vincenti 

These are inhomogeneous wave equations, with the inhomogeneity arising from 
the driving radiation from the black wall. The upper signs pertain to waves 
propagating to the right; the lower signs to waves propagating to the left. 

It can be verified that a particular solution of (17)) denoted by subscript p ,  
is given by 

Bu2 I T!! I 
Z' +-% = gab- {exp ( - bBux) ( f bBu cos f- sini) p-7-1 Bo 1 + b2Bu2 

- exp [ - bBu(2z - X ) ]  ( T bBu cos i?- sini) +sin (%T X) [l- exp ( - 2bBuT)I). 

The result for Ti;, obtained by adding these two expressions, is 

(18) 

Bu2 1F.l 
Bo 1 + b2Bu2 

iik = - gab - {exp ( - bBuX) - exp [ - bBu( 2.,5 - Z)] 

- [ 1 - exp ( - 2bBuZ)l cos X }  sin f. ( 19) 

Note that the particular solution has been chosen such that Ti; vanishes at Z = 0. 
The complementary function, denoted by subscript c, is given by the general 
solution of the homogeneous wave equation as follows: 

- 2c; 
u'+- = 2f*(%T 5). 

c -  y-  1 

Here, f +  and f- are undetermined functions representing right- and left-running 
waves, respectively. If we set 

so that U; will vanish at X = 0, we obtain by addition and subtraction of equation 

f+(4 = -f-(z) =fb)  (21) 

Ti; =f(%-X)-f(i+X), (22) 

5; = *(p l)[f(i-Z)+f(f+X)]. (23)  

(20) 

Since both Ti: and ii; vanish at Z = 0, the velocity U' = TiL+iik satisfies the 
boundary condition U ' ( 0 ,  t )  = 0. The function f is found by applying the boundary 
condition U'(1,t) = 0 ,  which requires that UL(z,f) = -U;(z,i). To accomplish 
this we take 

cos 2 
[ 1 - exp ( - 2bBuz)I- 

Bu2 I T!; I 
Bo 1+b2Bu2 tanL'  

f ( 2 )  = - 4 ~ b  - 

Substituting this expression into (22)  and adding the result to expression (19)) 
we obtain finally 

U' = -sub- BU2 ''" {exp ( - bBu3) - exp [ - bBu(2E - a)] Bo 1 + b2Bu2 
- [l -exp (-2bBuE)l [cosx- (sinZ/tanz)])sin%. ( 2 5 )  

This result for the velocity is acceptably accurate away from resonance. Near 
resonance, however, where z % "/T and hence t a n z  FZ 0, the amplitude of U' 
becomes so large that the small perturbation assumption of the linearized theory 
is violated. As was discussed in the introduction, this occurs because precisely 
at resonance the complementary function U; is unable to satisfy the condition 
G'(L,i) = 0 by cancelling the value of 3;. 
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In  the laboratory device the radiative driving of the gas is weak. One therefore 
expects, contrary to the predictions of the simplified linear theory, that the 
amplitude of the wave motion will actually remain small even at  resonance. The 
most significant portion of the governing equations (16) should then still be the 
terms of the simplified linear theory. Near resonance, however, one must also 
take into account both the nonlinear terms and terms due to perturbations in 
spontaneous emission. These facts together suggest an iterative approach. Any 
attempt at  iteration, however, will clearly fail if one uses as a first approximation 
the solution of the simplified linear theory given by (25) and the corresponding 
expression for C'. Chester suggests using instead the complementary function of 
the simplified linear theory as given by (22) and (23), that is, with f still un- 
determined. The form offwill then be found by applying the boundary condition 
after the first iterated solution of the governing equations. The resulting final 
solution will constitute a uniformly valid first approximation, since the non- 
linear terms and the perturbations in spontaneous emission will have been taken 
into account before the form off is found. It is sufficient to use only the com- 
plementary function for iteration, since, although it does finally remain small 
at  resonance, it still dominates over the particular solution. This is consistent 
with the near-resonance approximation a' f?' used in 9 2, since the particular 
solution is of order 8' while the complementary function is of order 0'. 

Proceeding on this basis, we first use expressions (22) for ;II; and (23) for 5; 
to evaluate all but the driving term on the right-hand sides of equations (16). 
The resulting equations are 

- 

- ( y - 1) b B ~ / ~ ~ [ ] ( i -  5) +f(i - 3)] {exp ( - bBulZ - 51 ) sgn (3 - 5) 

- exp [ - bBu( 2E - Z - a)]} d5 + [2(y - 1 )/abBu] [f(l- E) -f(i?+ Z)] 1 , (26) 

where f(i k X) denotes 

These are inhomogeneous wave equations that must be solved for E' in terms of 
the still undetermined function!. Since they are linear in the unknown E' and C', 
the inhomogeneity can be considered as the sum of separate effects and the 
corresponding contributions of the solution calculated separately. 

We begin by calculating the contribution of the nonlinear effects. If subscript n 
denotes this part of the solution, the pertinent equations are 

a a -  (%&a) ( u A k 3 )  = + f r ( f T X ) [ ( y +  l)f(fTZ)-(3-y)f(f+a)]. (27) 
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These are readily integrated through introduction of the characteristic co- 
ordinates a = Z-Z and p = f+Z.  We thus obtain 
- u; = +(y+ l)Z[f(i-Z)f’(Z-Z) +f(f+Z)f’(f+Z)] 

- i ( 3 - y )  [f‘(f-Z)f(Z+Z) -fyf+k?)j(f-Z)]. (28) 

Note that iih vanishes at  X = 0. 
The contribution from perturbations in spontaneous emission, denoted by 

subscript r, is calculated from (26) with only the spontaneous-emission terms 
retained on the right, that is, 

x {exp ( - b ~ u l ~  - Z] sgn (5 -5) - exp [ - bBu(2E - 2 -$)I} dE 

- [2(y- l)/abBu] [f(f-2) -f(Z+Z)l). (29) 

To solve these equations a trial solution is assumed of the form 

1” [G*(f-  Z) + G,(i+ E)] exp [ - bBu(x - Z)] dZ Z’+- = 2Z; 
r - 7 - 1  0 

-Jz: [HTt(f-5) + ~ * ( ~ + 5 ) 1 e x p  [ - b ~ u ( % - ? ) l d ~  

-/oz[I*(Z-Z)+ I*(Z+$)]exp [- bBu(2z-Z-Z)]dZ. (30) 

This form is chosen because it has the same structure as the integral terms in 
(26). The trial solution is then substituted into (29). In  the resulting equations 
integral terms with the same limits are grouped together and combined under 
the same integral sign. The integrands are then set equal to zero, which results 
in ordinary differential equations for the functions G&, H* and I*, typical ones 

being G;(z) T bBuG*(z) = 8ab2(y- 1) (Bu2/Bo)j(z). (31) 

These equations, as well as those for H* and I*, are solved with the use of in- 
tegrating factors [exp ( T bBuz) in the case of (31)]. Additional terms must then 
be added to the trial solution (30) to account for the non-integral terms on the 
right-hand sides of equations (29) and for certain non-integral terms that were 
also generated when the trial solution was substituted into (29). Undetermined 
complementary functions h i ( f T  ?) are also added to the trial solution so that iii 
can be made to vanish at  2 = 0. Once the expressions for ii; k 2C;/(y- 1) have 
been completed, we add them to obtain Gi and then determine h*(f ’F: 2 )  from the 
foregoing condition. The final expression for iii is ”““(S:S” A -  a; = - 4ab2(y - 1) - [f(t - 11) 4f+ 711 {exp [ - bBu@ - r)l Bo 

+ exp [ - bBu(2 + y - 2E)]} dy dE 

-/z!/‘[j(~-y) -j(f+y)]{exp [ - b ~ u ( y  -x)l+exp[-bBu(2~-Z-y)l}dyd~ 
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E 55 _ _  
[ f ( t  - x - 7) - . f ( f -  x + 7) +f(f+ x - 7) -&+ 5 + 7)] 

+ * s o  s 
z 

+exp[-bBu(2E-7)]}d7dE--2x r l'f(f-7) --f(f+7)] cosh[-bBu(S-7)]dy 

+(2Z/ub%u2) [ f ( r - Z ) + f ( % + x ) ]  . I J  
Here we have introduced an integral notation that can be represented generally by 

The indefinite integral of g(7, [) with respect to ,$ can be written as 
5 

s g ( T W E  =I 9(7,7)d7+47)+/37 

S59(7, 7) a7 

where 47) is an arbitrary function of 7 and ,8 is an arbitrary constant. Thus 

denotes the indefinite integral of g(r ,  6) with respect to 6 with both 47) and p 
set equal to zero. 

The contribution from the driving radiation is calculated from (26) with only 
the terms due to that radiation retained on the right. Since these equations are 
identical to the governing equations (17) of the simplified linear theory, the 
solution for this part of the velocity is simply the particular solution Gk of (17), 
given already by ( 19). 

The solution of (26) for the complete velocity U' can now be constructed. It is 
the sum of the contributions GL [equation (28)] ,  Gi  [equation (32)]  and Z; [equa- 
tion (19)], which together constitute a particular solution of (26),  plus the com- 
plementary function SI, = f ( f -  x) -f(f+ x). Since each of these parts vanishes at 
Z = 0, the boundary condition Z'(0, t )  = 0 is satisfied. 

The condition u'(5,f) = 0 remains to be taken care of. Imposition of this 
condition leads to the following equation governing the function f :  

f ( t -L)  - f ( f+L) + * (y-  l )L [ f ( f -L) f ' ( f -E)  + f ( f + E ) f ' ( f + L ) ]  
- a( 3 - y )  [f'(f - L)f(i+ E )  -At+ L ) f ( f  - E)] 

Bu3 
Bu2 l'" [I -exp ( - 2 b B d ) l  cosLsinf- 4ab2(y- 1 )  - B o  B o  1+bzBu2 

+ 8 ~ b  - 

x (exp ( - bBuy) + exp [ - bBu(2E - 7)]  + exp [ - bBu(2Z - 7)] 
+ exp [ - bBu(2E - 2% + 7)]} dy dE 

- 2LsL  [ . f ( f -  7) -f(i+ 7)] cosh [ - bBu(Z - y)] d7 
- 

+- 2L [ f ( t - L ) + f ( t + L ) ]  
ub2Bu2 
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Following Chester’s procedure, we can simplify this equation by taking 
advantage of the near-resonance approximation I L - ATnI < 1. Since f is assumed 
to be periodic with the period 2n, it follows that 

f(t+ Nn) = f(t- Nn). 

f(t+L- A) = f ( t - E +  A), 

f ( f  + E )  M f(t - E )  + Af ’(t - E )  + A f ’(t + E )  . 

(34) 

(35) 

and the near-resonance condition is [A[  < 1. Thus (35) can be expanded to first 
order in A to obtain 

With the definition A = - Nn, this can be written as 

(36) 

Differentiation of this equation shows that f’(t+L) = f‘(t-z) + O(A), and this 
result can be used to rewrite (36) to first order as 

(37) 

(38) 

f ( f  + L)  M f ( f  - E )  + 2Af’ (t - L )  . 

A M tan(E-Nn) = t anz ,  

Since 1 A 1 is small, we have to a first approximation 

which can be used to write (37) as 

f ( i + E )  M f(t-E)+2tanEf’(t-L). (39) 

This near-resonance approximation is used in (33) to simplify in turn the terms 
derived from iii, ii; and Ti:. In  each case only the leading term in A z t a n z  is 
retained. One finds that the leading terms from Ti; and 3: are independent of A, 
while that from Ti: contains the first power of A. 

In the resulting equation a further simplification is achieved by using through- 
out the transformation il = t- L. The factor sin fin the term derived from iib can 
then be written, with the use of the relation L = Nn + A and to the lowest order 

(40) 
in A, as 

sin i? = sin (il + L)  z sin $l/cos L. 

The motivation for this, as we shall see presently, is to recover the solution of 
the simplified linear theory away from resonance. The subscript on tl is hereafter 
dropped. 

The relation E = Nn + A is also used to replace E by Nn when it appears in 
the integral terms. This is equivalent to substituting N n  + A for E ,  expanding 
for small A and retaining only the leading term. 

Once the above simplifications to (33) have been carried out, the resulting 
equation is integrated with respect to f. This results in 

x {exp ( - bBuy) + exp [ - bBu(2Nn - q ) ]  -t exp [ - bBu(7 - 231 

+ exp [ - bBu(2Nn - 22 + 7)]} dt d7 dZ - 2NnBu2 / N p ( f + N m - 7 )  
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where we have introduced the following definitions: 

where (45)  

The integration constant c in (41 )  must be chosen so that the mean value of P 
over an interval of 271 is zero. This condition is a consequence of the fact that over 
one cycle the integral of B' with respect to time must be zero so that gas particles 
return periodically to the same position. 

The integrations indicated in (41)  can be carried out formally by representing 
the function P by a Fourier series as follows: 

m 

n=l 
P ( f )  = x (a, cos nt + b, sin nt) 

= $ J '"  ~ ( 4 )  cos [n(t- E ) ]  dg. (46 )  
Tn=1 o 

The constant term in the series is omitted because the mean value of P is zero. 
Expression (46 )  is used to rewrite (41)  as 

c+*cosf = [ F ( f ) - ~ ] * - 2 2 6 ~ 0 2 n P ( ~ ) K ( f - g ; B u ,  N ) d &  (47)  

where 

x (exp ( - bBuy) + exp [ - bBu(2N71 - r ) ]  + exp [ - bBu(y - 231 

+ exp [ - bBu( 2Nn - 22 + 7 )]} dy d2 + 4Nb2Bu2( - 
n,2 

x1Nnsinn7cosh[-bBu(N71-y)]d7+- 

With the integrations indicated in this expression carried out, we obtain 

[ 1 - exp ( - 2bBuN71)I 

+ 

bBu3 

). (49)  
N2[n2 + ( 1 - a)  b2 Bu~]  

ab2 n 

4sinnz 
K ( z ; B u , N )  = 2 

Por large values of n the terms in this series behave like 
(4N/ab2) ( l /n  - ab2Bu2/n3) sin nz. 

The convergence is improved considerably by subtracting this quantity from 
each term in the series, and compensating by adding the analytical sum 

(4N/ab2) ( l /n  - ab2Bu2/n3) sin nz 
n=l  

t o  the expression for K(z) .  In  this way we obtain 
exp ( - 2bBuN71)] NbBu +-I an2 

m 

K(z;  Bu, N )  = 4bBu3 x 
(71 -43+ (52& --- N 7 1 y )  (n-2). (50) 

NBu2 +- 3 
Note that the terms of the series in this expression behave like n-5 sin nz. 
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FIGURE 2. The kernel K(z)  calculated from equation (50) for the first 
resonant frequency ( N  = 1) and with a = 1, b = J3.  

The function K(x),  calculated from (50), is shown in figure 2 for the first 
resonant condition N = 1, and for Bu = 0.1, 1 and 8. Since K(x) has period 27r, 
it is displayed only in the interval 0 to 2n. We see that K(z)  depends strongly on 
the value of Bu. Note also that it is an odd function around the point z = n, and 
that it has discontinuous jumps at  x = 0 and 277. 

The nonlinear integral equation (47) is the required equation that governs the 
response of the gas. The first term is the integration constant that remains to 
be chosen so that the mean value of F is zero. The second term arises from the 
driving radiation from the black wall. The third contains both the nonlinear 
and linear terms of the gasdynamics. The integral term is from the perturbation 
in spontaneous emission. 

We now wish to ascertain the criteria that must be satisfied for the governing 
equation (47) to be valid. This will also make clear the role of the various small 
parameters of the problem. Basic assumptions for our application of Chester’s 
method are that the nonlinear contribution Ti;, the radiative contribution ?ii 
and the particular solution Ti; are small compared with the complementary 
function ;LEE (except, of course, in the neighbourhood of a node of Ti;). A close 
examination of these terms (for details, see Eninger 1971) shows that we have 
u; < ii;, Ti; < Ti; and 2; < Ti; only if, respectively, €4 < 1, l/Bo < 1 and tan Z < 1. 
In order to specify the relative size of these three small parameters, the two 
similarity parameters 6 and r are required (6 [equation (43)] is proportional to 
the ratio of I/Bo to €4; r [equation (42)] is proportional to the ratio of t a n z  
to €4). In  physical terms, e [equation (45)] is a measure of the strength of the 
driving radiation, 6 is a measure of the importance of perturbations in spon- 
taneous emission, and r is a normalized deviation from resonance. 

- 
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Because the near-resonance assumption t a d  < 1 was used in the derivation of 
(47) (not only to ensure that T i ;  < u;, but also so that approximation (39) could 
be used), one would expect this equation to be valid only near resonance. This 
would have been the case, except that the arbitrary substitution of (40), valid 
within the near-resonance approximation, was introduced with the specific 
purpose of modifying (47) so that it is still valid away from resonance as well. 
To see this, consider that away from resonance t a n z  is no longer small, so that 
we have r -+ GO. In  this limit the nonlinear and integral terms can be dropped 
from (47). The solution of the resulting equation is identical to expression (24), 
which is the solution of the simplified linear theory valid away from resonance. 

4. Solution of the nonlinear integral equation 
Before proceeding with the general solution of (47), it is instructive to consider 

the limiting cases 6 + m and S + 0. 
Consideration of the order of magnitude of the terms of (47) shows that in the 

limit 6 -+ GO the nonlinear term is negligible compared with the integral term. 
Thus the valid governing equation in this limit is a linear integral equation with 
a harmonic forcing term. One expects, then, that the solution is also harmonic. 
By assuming a sinusoidal form for F ( f ) ,  we are lead to the solution 

P ( f )  = +[(26K1)2 + (4r/n)2]-* sin (t - #), (51) 

where # = tan-, (2r/SK17?), (52) 

and K ,  is the coefficient of sinz in the first term of the series in (49). Since this 
solution is valid in the limit where nonlinear terms are negligible, it should 
be comparablewith the Long-Vincenti (1967) linear theory. Unlike the present 
theory, however, the Long-Vincenti theory is not restricted to the condition 
l/Bo < I. Our result does, in fact, agree exactly with an analytical result that 
Compton (1969) obtained for the Long-Vincenti theory in the limit l/Bo .+ 0. 

In  the limit S + 0 the integral term in (47) -and hence the effect of spontaneous 
emission - vanishes. The resulting equation is 

b2 + C O S ~  if = [ F ( f )  - 2r/nI2, (53) 

where the identity cos f = 2 cos2 it- I has been introduced and the unde- 
termined constant b2 is related to c by 

iy = c - I .  2 (54) 

Equation (53) is identical to the equation that Chester (1964) obtains as governing 
piston-driven resonant wave motion of an inviscid gas. Thus we see that in the 
limit 6 --+ 0 the gas responds in the same manner whether it is driven by a piston 
or by a sinusoidally varying radiative flux.t 

t This final statement applies for arbitrary 6 as well. For if, in the radiative problem, 
we choose to  drive the gas with a small amplitude piston motion, the governing equation 
for arbitrary 6 turns out to be formally identical to (47), which governs the radiatively 
driven case. 

12 F L M  60 
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The solution of (53), which follows Chester, is reproduced here, because the 
concepts involved will be needed in the general solution of (47). We begin by 
formally solving (53) for F@), which results in 

P ( f )  = 2r/n 5 [b2 + cos2 @I*. (55)  

The sign of the square root and the value of b2 must then be taken so that the 
mean value of F is zero. To this end expression (55) is integrated from 0 to 2n and 
set equal to zero, which leads to 

This equation is rewritten as 

( r l  = (l+b2)*/o*n 

= (1 + b2)* E[( 1 + b2)-h, QT], (57) 

where E is the complete elliptic integral of the second kind. Equation (57) is 
a transcendental equation that gives the undetermined constant b2 in terms of r .  
Since the right-hand side of (53) is always positive, the left-hand side must be 
positive as well. As a consequence, we have the condition b2 2 0. All values of 
b2 3 0, however, correspond in (57) to values of Ir] 2 1. Thus only for Irl 2 1 
is it possible t o  find a continuous solution with a zero mean value. In  this case, 
the sign of the radical in (55) is chosen such that (56) is satisfied. This can be 
accomplished by writing the solution for Irl 2 I as 

F ( f )  = 2r/n - sgn ( r )  [bz + cos2 if]:. (58) 

For ( r (  < 1, no continuous solution exists that has a zero mean value. We must 
therefore consider the possible construction of a discontinuous solution from 
segments of the two solutions given by (55), the segments being connected by 
discontinuities that represent shock waves. The constant b2 and the position of 
the discontinuities must be selected so that the solution has a zero mean value 
and a period of 2n. 

Since b2 must be greater than or equal to zero, we have two cases to consider. 
Either b2 equals zero, in which case the two solutions given by (55) have a point 
in common; or b2 is greater than zero, and no common point exists. In  the latter 
case, if we introduce a discontinuous jump from the lower solution, given by the 
minus sign in (55), to the upper solution, given by the plus sign, we are faced 
with a dilemma. As will be shown presently, F is proportional to  the pressure on 
the reflecting wall. Thus a jump from the lower solution to the upper represents 
a compressive shock. Since F is periodic, we must; return to the lower solution, 
but the only way to accomplish this is with another discontinuous jump. Such 
a jump from the upper solution to the lower represents a rarefaction shock, which 
is a physical impossibility. Thus we have no choice but to  take b2 = 0. With 
b2 = 0 equation (55) becomes 

The upper and lower solutions now have a point; in common whenever E is an 
integer multiple of n. If we begin on the lower solution and jump to  the upper 

F(E) = 2r/n+ Icos+fl. (59) 
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solution by means of a discontinuity representing a compressive shock, we can 
now return to the lower solution through the common point, that is, by means 
of a continuous expansion. If consecutive shock waves occur at  I = 0 and 
f = 2n + 8, then P can be written for the present case 1 r 1 < 1 as 

for 

F(I )  = 2r/n + cos &?, 
e < 1 ~ 2 n + e .  

Outside this interval P is defhed as the periodic extension of expression (60). 
The position 8 of the shock wave is determined by the condition that P must have 
zero mean value over the interval (61). This yields the result 

8 = 2 sin-l r .  (62) 

To be specific, we shall take - &r 6 sin-l r 6 in. 
We can now face the task of solving (47) for arbitrary 6. The arguments to be 

employed are the same as those used in Chester's solution for the case 6 = 0. 
The steps are more involved, however, because it is not possible to solve the 
general equation explicitly for P. To begin, since the integrand term has period 
27r, equation (47) can be rewritten as 

where 8 gives the position of a shock wave if one exists. As with the limiting 
solution (60), equation (63) is taken to govern P in the interval 0 < I 6 i n i t ' .  
One expects shock waves to exist for certain values of r if 6 is sufficiently small, 
since the solution in the limit 6 + 0 was seen to contain such waves. On the other 
hand, one does not expect shock waves for any r if 6 is sufficiently large, since the 
solution for 6 --f co did not contain such waves. In  the latter case, (63) still 
governs P, but 8 is considered merely as an arbitrary constant. In  either case, 
the mean value of _F must be zero, which gives the condition 

/e2ff+eF(i)H = 0. 

If no shock exists, then (63) and (64) are sufficient to define both P and the 
undetermined constant c. 

If a shock wave does exist, additional equations are needed to express the 
condition that no rarefaction shock is permissible. By taking the square root of 
equation (63), we obtain for the two solution branches 

p y f )  - 3 = f [ c + 8 cos I+ 26/e2n+e P ( t )  K ( f  - [I at] +. 

From the original equation (63), the expression within the radical must be always 
greater than or equal to zero. In  addition, both branches of the solution must 
have a point in common in order that a continuous transition from the upper 
branch to the lower branch is possible. This point will occur when the expression 
within the radical vanishes. Thus the necessary value of c can be written as 

c = - 8 cos fm - 26 F ( [ )  K(fm - 6) d t ,  
12-2 
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where fm is the value of fa t  which the expression inside the radical is a minimum. 
Thus &, must satisfy the condition for a minimum, that is, 

{a d [C + Q cos f+ 26fsznc8F([) K ( f -  [) d [ ]  1- = 0. 

t = t ,  

Carrying out the differentiation, we obtain 

(67) 

An alternative equation for fm can be obtained by noting in (65) that since the 
right-hand side vanishes at f = im, the left-hand side must vanish there as well. 
~ h u s  we write F(fm)  - 2r/n = 0. 

Equations (63), (64), (66) and either (68) or (69) constitute four equations that 
govern F ,  c,  8 and fm for the case when shock waves exist. When shock waves do 
not exist, 8 is chosen arbitrarily, and the last two equations, (66) and (68) or (69), 
are dropped. In  either case, the main equation (63) is anonlinear integral equation. 
The strategy that will be employed to solve these equations is to reduce them to 
a set of purely linear equations by means of the method of parametric dif- 
ferentiation. 

This method was first applied to problems in fluid mechanics by Rubbert & 
Landahl (1967). They demonstrated the method by applying it to the Falkner- 
Skan boundary-layer equation and to the problem of airfoils at transonic speeds. 
The first application to problems of radiative gasdynamics was by Jischke & 
Baron (1969). They used the method to obtain solutions for radiating gas flow 
in the stagnation region of a blunt body. The central idea of parametric differentia- 
tion is to calculate the small change that a solution makes away from a known 
solution as the result of a small change in a suitable parameter. This provides 
a new solution corresponding to the increased value of the parameter, and the 
process is repeated. In  this manner, the solution is found for the desired range of 
the parameter. The advantage of parametric differentiation is that the equations 
that govern the change of the solution with respect to a change in the parameter 
are linear. 

In  the present problem we apply the method by considering the solution as 
a function of 6, that is, we regard the four unknowns as F ( f ; 6 ) ,  c(6), e(6)  and 
fm(S). We now calculate the change in these quantities as a result of a small 
change in 6 by differentiating (63), (64) and (66). In  the equation resulting from 
(66), the coefficient of afm/a6 is identical to the left-hand side of (68); the term 
with afm/a& %herefore disappears. With the aid of the fact that K(x) is periodic 
with period 2n, and with introduction of the notation AF for the magnitude of 
the discontinuity in F [i.e. P(8,) --F(O-)], the differentiated equations can be 
written as 
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For simplicity, the dependence of 6 and fm on S is not indicated specifically in 
these equations. 

In  each cycle of the step-by-step procedure, the results from the previous cycle 
are first substituted for F(6 S), 6(S) and Em(&) in the above equations. These then 
become three linear integral equations for the derivatives aF/aS, &/as and a6/aS. 
Once this set of equations has been solved (by a method to be described presently), 
a neighbouring solution is calculated from 

With the function P(f ;S+AS)  obtained from (73), the value of t-,(S+AS) is 
found from (69). 

To start the step-by-step procedure, we use the solution obtained earlier for 
S = 0. With the foregoing scheme, solutions are then generated for larger and 
larger 6. These at first contain shock waves. As we have seen, however, for S --f GO 

the solutions must be continuous. Thus a point is presumably reached in the 
step-by-step process at  which the shock waves disappear. That is, at  a certain 
value 6 = Scrit, AF vanishes. Since the coefficients of at'?/aS in (70), (71) and (72) 
each contain the factor AF, this is a singular point for these equations. For 
6 > Scrit, it is necessary to use only (70) and (71) witih AF set equal to zero and 0 
considered as an arbitrary constant. In  this case we need calculate only F and c. 

is not possible to continue from the solution previously obtained 
for 6 = Scr,t. This follows from the fact that &it is a singular point of the equations 
for 6 > Scrit as well. One can, however, begin the procedure anew by starting 
with a known solution for 6 far above Scrit. Solutions are then generatied for 
decreasing values of S by using a negative increment AS. A starting solution for 
6 $ Scrit is found from (63) and (64). Since the nonlinear term is small for large 
values of 6, these equations are readily solved by iteration, with the previously 
obtained solution for 6 + GO used as a firsti approximat;ion. In  this iterative pro- 
cess the equations for each successive approximation are linear. 

On may wonder why an iteration procedure such as this is not used t o  find the 
solution for all values of 6. To speed the process the converged solution for one 
value of 6 could be used as the first approximation for a neighbouring value of 6. 
Such a scheme was in fact tried. While it was successful for both large and small 
values of 6, there is a range of 6 around the critical value within which the itera- 
tions do not converge. 

It remains to describe the method used to solve the linear integral equations 
(70)-(72). For this purpose we take n equally spaced points on the interval 

For 6 > 
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8 < t < 27r + 8, with i at the ith point denoted by &. The trapezoidal integration 
formula is then used to express each integral term as a weighted sum of the value 
of the integrand at the n points. (Allowance must be made for the discontinuity 
of the kernel K ;  for details, see Eninger 1971.) Since the resulting equations hold 
for any f, this variable can be set equal in turn to its value at  each point in the 
interval. This procedure reduces the set of linear integral equations to a set of 
simultaneous linear algebraic equations for the value of the solution at the n 
points. These equations are solved on a computer. 

5. Results and discussion 
The solutions that will be presented are restricted to the frequency range 

Irl < 1 around the first resonant frequency ( N  = 1). Figure 3 gives F ( i )  for three 
values of Bu (0.1, 1, and 8) when the system is precisely at resonance; figure 4 
displays F ( i )  for the three near-resonance situations r = 0.5, 0.9 and 1, all for 
the intermediate value of Bu = 1. In each case, the method of parametric dif- 
ferentiation generates solutions for numerous values of 6, but only about every 
fifth solution is shown. The solutions for the different values of Bu are calculated 
on the basis of the kernels displayedin figure 2.f The kernels, which are calculated 
from (50) ,  depend not only on Bu and N ,  but also on the constants a and b of the 
exponential approximation. Here a is taken as 1 and b as 4 3 .  It is only necessary 
to calculate solutions for positive values of r ,  because it can be shown from the 
governing equation (47) that, if P(i) is a solution for r ,  then - P( - i) is a solution 
for - r .  This is a consequence of the fact that the kernel K(z)  is an odd function 
about x = 7r. 

The function F admits more than one physical interpretation, For example, 
near resonance the velocity is given to a first approximation by the comple- 
mentary function alone. That is, although the nonlinear and radiative contribu- 
tions and the particular solution are essential for obtaining the equation that 
governs F ,  once k’ is found these contributions can be ignored. Thus the velocity 

From this we obtain, with the use of the linearized form of the momentum equa- 
tion (2) and the periodic property of P, the following expression for the perturba- 
tion pressure at  x = E :  j j ’ ( ~ ,  t )  = 2yst~( t -z) .  

Thus near resonance F can be thought of as describing the time variation of 
pressure on the reflecting wall. 

There is one exception for which the foregoing expression is invalid. For the 
limit Bu + 0, careful consideration of the order of magnitude of the contribution 
to the pressure from the particular solution shows that this contribution cannot 

7 It is apparent from figure 2 that, as Bu becomes large, the kernel develops sharp bends 
near the end points of the interval. The kernel for Bu = 8 was calculated rather than that 
for Bu = 10, since the former can be more accurately represented by its value at a reason- 
able number of points. In  this case, 81 points were used in the interval 0 < t G 271 for 
the solution of the linear integral equations. For the other two values of Bu, 41 points 
were used. The solutions were carried out on the IBM 360 computer at  Stanford University. 
The computer time needed to generate a set of solutions was always less than 6 min. 

is given by Z’ = d[F( t -Z ) -F( f+Z)] .  
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FIGURE 3. Solutions precisely at the first resonance ( r  = 0) for 
(a )  Bu = 0.1, ( b )  Bu = 1 and (c) Bu = 8 ( N  = 1, a = 1, b = 4 3 ) .  
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FIGURE 4. Solutions near the first resonant frequency for BU = 1 ( N  = 1 ,  a = 1, b = 3). 
( a )  r = 0.5, OS+ = -Qn. ( b )  r = 0.9, O,=, = 0.917. ( c )  r = 1, OS=o = 0. 

be neglected. I n  this limit the situation is optically thin, and the effect of the 
driving radiation is to heat the gas almost uniformly along the length of the tube. 
Uniform heating does not excite wave motion. Hence, even a t  resonance the 
contribution to the pressure from the wave motion, that is, from the com- 
plementary function, can be smaller than the contribution from the radiative 
heating, that is, from the particular solution. 

Let us first consider the results precisely a t  resonance (figure 3). The most 
noticeable result of an increase in the relative ilevel of the perturbations in 
spontaneous emission (increased 8) is that, for a fixed relative strength a t  the 
driving radiation (fixed e), the strength of the shock wave rapidly diminishes. 
Physically, this is due to an increase in the net heat flux emitted by the heated 
gas behind the shock and absorbed by the cooler gas ahead of it. I n  the optically 
relatively thick case of Bu = 8 [figure 3 (c)], the effect of this radiative transfer 
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4 A F  

FIGURE 5. Relationship between the magnitude of the discontinuity AF, the deviation from 
resonance r ,  and the radiative parameter 6 (Bu = 1, N = 1 ,  a = 1, b = J3) .  

is confined to the vicinity of the shock; in the thinner case of Bu = 0.1 
[figure 3 (a)] ,  the effect spreads well away from the shock. 

Increase in spontaneous emission precisely at resonance ( r  = 0 )  reduces equally 
the positive and negative parts of the profile. Thus the solution remains antit 
symmetric about t = n-, and the condition that P should have a zero mean value 
is satisfied without a shift in the position of the discontinuity. This is not the 
case for the near-resonance solutions for ( r  1 < 1. Consider, for example, the solu- 
tions for r = 0.5 and 0.9 [figures 4 (a )  and ( b ) ] .  Since these are not antisymmetric 
about t = n-, the zero mean value of F is maintained by small shifts of the position 
of the discontinuity. 

From the solutions of both figures 4 and 5, we see that as 6 is increased for 
a fixed value of Bu and r ,  a value 8crit is reached at  which the discontinuity in P 
disappears. (The solution for r = 1 [figure 4(c)] is the exception since the dis- 
continuity has already just vanished at  6 = 0.) As 6 is increased beyond &it, 

the amplitude of P diminishes and the solution rapidly approaches the sinusoidal 
form predicted by the linear theory. 

Although no solutions for Irl > I are presented, one would expect them to  
be qualitatively similar to those for r = 1, except that the profiles would all be 
smooth and generally less peaked a t  small values of S. 

The dependence of the magnitude of the discontinuity AF on r and S for Bu = 1 
is shown in figure 5. Although this figure is for the neighbourhood of the first 
resonant frequency, similar figures would be obtained for higher resonant fre- 
quencies. The locus of points in the plane A F  = 0 gives Scrit as a function of r ;  
it thus separates the regions in the r ,  S plane in which shock waves do or do not 
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exist. In  the limit S --f 0 it  can be shown from (58) that the dependence of AB 
on Y is given by 

A P  = 2( 1 - r2 ) i .  

This relationship is displayed by the curve in the plane S = 0. Increasing S from 
zero for a fixed value of Y results in a nearly linear reduction of AB until the curve 
for is approached. 
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